Exploration of Fluorescent Protein Voltage Probes Based on Circularly Permuted Fluorescent Proteins
نویسندگان
چکیده
Genetically encoded fluorescent protein (FP) voltage sensors are promising tools for optical monitoring of the electrical activity of cells. Over the last decade, several designs of fusion proteins have been explored and some of them have proven to be sensitive enough to record membrane voltage transients from single mammalian cells. Most prominent are the families of voltage sensitive fluorescent proteins (VSFPs) that utilize the voltage sensor domain (VSD) of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP). The voltage sensitivity of the fluorescence readout of these previously reported membrane potential indicators is achieved either via a change in the efficiency of fluorescence resonance energy transfer between two FP spectral variants or via modulation in the fluorescence intensity of a single FP. Here, we report our exploration on a third VSFP design principle based on circularly permuted fluorescent protein (cpFP) variants. Using circularly permuted EGFP derived from GCaMP2 and two newly generated circularly permuted variants of the far-red emitting protein named mKate, we generated and characterized a series of voltage-sensitive probes wherein the cpFPs were fused to the VSD of Ci-VSP. The most promising variants were based on circularly permuted mKate with new N- and C-termini given by residues 180 and 182. Even so their voltage sensitivity was relatively modest, they constitute a proof of principle for this novel protein design.
منابع مشابه
A Fluorescent, Genetically-Encoded Voltage Probe Capable of Resolving Action Potentials
There is a pressing need in neuroscience for genetically-encoded, fluorescent voltage probes that can be targeted to specific neurons and circuits to allow study of neural activity using fluorescent imaging. We created 90 constructs in which the voltage sensing portion (S1-S4) of Ciona intestinalis voltage sensitive phosphatase (CiVSP) was fused to circularly permuted eGFP. This led to Electric...
متن کاملCircularly permuted monomeric red fluorescent proteins with new termini in the beta-sheet.
Circularly permuted fluorescent proteins (FPs) have a growing number of uses in live cell fluorescence biosensing applications. Most notably, they enable the construction of single fluorescent protein-based biosensors for Ca(2+) and other analytes of interest. Circularly permuted FPs are also of great utility in the optimization of fluorescence resonance energy transfer (FRET)-based biosensors ...
متن کاملInsertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor
Visualization of electrical activity in living cells represents an important challenge in context of basic neurophysiological studies. Here we report a new voltage sensitive fluorescent indicator which response could be detected by fluorescence monitoring in a single red channel. To the best of our knowledge, this is the first fluorescent protein-based voltage sensor which uses insertion-into-c...
متن کاملEngineering fluorescent protein substrates for the AAA+ Lon protease.
AAA+ proteases, such as Escherichia coli Lon, recognize protein substrates by binding to specific peptide degrons and then unfold and translocate the protein into an internal degradation chamber for proteolysis. For some AAA+ proteases, attaching specific degrons to the N- or C-terminus of green fluorescent protein (GFP) generates useful substrates, whose unfolding and degradation can be monito...
متن کاملSimultaneous Detection of Ca2+ and Diacylglycerol Signaling in Living Cells
Phospholipase C produces two second messengers--diacylglycerol (DAG), which remains in the membrane, and inositol triphosphate (IP(3)), which triggers the release of calcium ions (Ca(2+)) from intracellular stores. Genetically encoded sensors based on a single circularly permuted fluorescent protein (FP) are robust tools for studying intracellular Ca(2+) dynamics. We have developed a robust sen...
متن کامل